81 research outputs found

    Quadrature imposition of compatibility conditions in Chebyshev methods

    Get PDF
    Often, in solving an elliptic equation with Neumann boundary conditions, a compatibility condition has to be imposed for well-posedness. This condition involves integrals of the forcing function. When pseudospectral Chebyshev methods are used to discretize the partial differential equation, these integrals have to be approximated by an appropriate quadrature formula. The Gauss-Chebyshev (or any variant of it, like the Gauss-Lobatto) formula can not be used here since the integrals under consideration do not include the weight function. A natural candidate to be used in approximating the integrals is the Clenshaw-Curtis formula, however it is shown that this is the wrong choice and it may lead to divergence if time dependent methods are used to march the solution to steady state. The correct quadrature formula is developed for these problems. This formula takes into account the degree of the polynomials involved. It is shown that this formula leads to a well conditioned Chebyshev approximation to the differential equations and that the compatibility condition is automatically satisfied

    A spectral multi-domain technique with application to generalized curvilinear coordinates

    Get PDF
    Spectral collocation methods have proven to be efficient discretization schemes for many aerodynamic and fluid mechanic problems. The high order accuracy and resolution shown by these methods allows one to obtain engineering accuracy solutions on coarse meshes, or alternatively, to obtain solutions with very small error. One drawback to these techniques was the requirement that a complicated physical domain must map into a simple computational domain for discretization. This mapping must be smooth if the high order accuracy and expontential convergence rates associated with spectral methods are to be preserved. Additionally even smooth stretching transformations can decrease the accuracy of a spectral method, if the stretching is severe. A further difficulty with spectral methods was in their implementation on parallel processing computers, where efficient spectral algorithms were lacking. The above restrictions are overcome by splitting the domain into regions, each of which preserve the advantages of spectral collocation, and allow the ratio of the mesh spacing between regions to be several orders of magnitude higher than allowable in a single domain. Such stretchings would be required to resolve the thin viscous region in an external aerodynamic problem. Adjoining regions are interfaced by enforcing a global flux balance which preserves high-order continuity of the solution, regardless of the type of the equations being solved

    Finite length effects in Taylor-Couette flow

    Get PDF
    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cyclinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments

    TAWFIVE: A user's guide

    Get PDF
    The Transonic Analysis of a Wing and Fuselage with Interacted Viscous Effects (TAWFIVE) was developed. A finite volume full potential method is used to model the outer inviscid flow field. First-order viscous effects are modeled by a three dimensional integral boundary layer method. Both turbulent and laminar boundary layers are treated. Wake thickness and curvature effects are modeled using a two dimensional strip method. A very brief discussion of the engineering aspects of the program is given. The input and use of the program are covered in great detail

    Preconditioning for first-order spectral discretization

    Get PDF
    Efficient solution of the equations from spectral discretizations is essential if the high-order accuracy of these methods is to be realized. Direct solution of these equations is rarely feasible, thus iterative techniques are required. A preconditioning scheme for first-order Chebyshev collocation operators is proposed herein, in which the central finite difference mesh is finer than the collocation mesh. Details of the proper techniques for transferring information between the meshes are given here, and the scheme is analyzed by examination of the eigenvalue spectra of the preconditioned operators. The effect of artificial viscosity required in the inversion of the finite difference operator is examined. A second preconditioning scheme, involving a high-order upwind finite difference operator of the van Leer type is also analyzed to provide a comparison with the present scheme. Finally, the performance of the present scheme is verified by application to several test problems

    An analysis of artificial viscosity effects on reacting flows using a spectral multi-domain technique

    Get PDF
    Standard techniques used to model chemically-reacting flows require an artificial viscosity for stability in the presence of strong shocks. The resulting shock is smeared over at least three computational cells, so that the thickness of the shock is dictated by the structure of the overall mesh and not the shock physics. A gas passing through a strong shock is thrown into a nonequilibrium state and subsequently relaxes down over some finite distance to an equilibrium end state. The artificial smearing of the shock envelops this relaxation zone which causes the chemical kinetics of the flow to be altered. A method is presented which can investigate these issues by following the chemical kinetics and flow kinetics of a gas passing through a fully resolved shock wave at hypersonic Mach numbers. A nonequilibrium chemistry model for air is incorporated into a spectral multidomain Navier-Stokes solution method. Since no artificial viscosity is needed for stability of the multidomain technique, the precise effect of this artifice on the chemical kinetics and relevant flow features can be determined

    Spectral methods for partial differential equations

    Get PDF
    Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized

    Spectral multigrid methods with applications to transonic potential flow

    Get PDF
    Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil

    Validation of Methods to Predict Vibration of a Panel in the Near Field of a Hot Supersonic Rocket Plume

    Get PDF
    This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity

    Insect-Attracting and Antimicrobial Properties of Antifreeze for Monitoring Insect Pests and Natural Enemies in Stored Corn

    Get PDF
    Insect infestations in stored grain cause extensive damage worldwide. Storage insect pests, including the Indianmeal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae); Sitophilus spp. (Coleoptera: Curculionidae); and their natural enemies [e.g., Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae), and Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae)] inhabit a temporary, but stable ecosystem with constant environmental conditions. The objective of the present experiment was to assess the efficacy of using ethylene glycol antifreeze in combination with nutrient solutions to monitor storage insect pest and natural enemy populations in three bins of corn, Zea mays L. The treatments were deionized water, a diluted (1:5 antifreeze:water) antifreeze solution, 10% honey, 10% honey in the diluted antifreeze solution, 10% beer in the diluted antifreeze solution, 10% sucrose in the diluted antifreeze solution, and a commercial pheromone trap suspended in a 3.8-liter container filled with 300-ml of diluted antifreeze solution. The seven treatments captured storage insect pests and their natural enemies in the bins at 33-36°C and 51-55% RH. The pheromone trap in the container with the diluted antifreeze captured significantly more P. interpunctella than the other treatments, but a lower percentage (7.6%) of these captures were females compared with the rest of the treatments (\u3e40% females). All trapping solutions also captured Sitophilus spp. and other beetle species, but the captures of the coleopteran pests were not significantly different among the seven treatments (P \u3e 0.05). Two parasitoid wasps also were captured in the study. The number of A. calandrae was different among the seven treatments (P \u3c 0.05), whereas the number of C. tarsalis was not different among the treatments (P \u3e 0.05). Most A. calandrae adults were captured by the 10% honey in the diluted antifreeze, whereas the fewest were captured in the deionized water. Microbial growth was observed in the 10% honey solution, but no microbial growth occurred in the rest of the treatments, including 10% honey in the diluted antifreeze solution. The results of insect captures and microbial growth demonstrated that antifreeze could be used as a part of storage insect monitoring and/or control programs
    • …
    corecore